Computing the Hessenberg matrix associated with a self-similar measure

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Hessenberg matrix associated with a self-similar measure

We introduce in this paper a method to calcúlate the Hessenberg matrix of a sum of measures from the Hessenberg matrices of the component measures. Our method extends the spectral techniques used by G. Mantica to calcúlate the Jacobi matrix associated with a sum of measures from the Jacobi matrices of each of the measures. We apply this method to approximate the Hessenberg matrix associated wit...

متن کامل

Computing the additive degree-Kirchhoff index with the Laplacian matrix

For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

Hausdorff measure of uniform self-similar fractals

Let d ≥ 1 be an integer and E a self-similar fractal set, which is the attractor of a uniform contracting iterated function system (UIFS) on Rd. Denote by D the Hausdorff dimension, by HD(E) the Hausdorff measure and by diam(E) the diameter of E. If the UIFS is parametrised by its contracting factor c, while the set ω of fixed points of the UIFS does not depend on c, we will show the existence ...

متن کامل

A monoid associated with a self-similar group action

We prove that there is a correspondence between self-similar group actions and the class of left cancellative right hereditary monoids satisfying the dedekind height property. The monoids in question turn out to be coextensive with the Zappa-Szép products of free monoids and groups, and the ideal structure of the monoid reflects properties of the group action. These monoids can also be viewed a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2011

ISSN: 0021-9045

DOI: 10.1016/j.jat.2010.02.008